Microplastics Analysis

每月发现微型塑料的地方列表变得更长,这使得对微塑料污染的分析是具有挑战性但非常重要的任务。

关于微塑料

What Are Microplastics?

根据定义,直径小于5 mm的聚合物颗粒称为微塑料(MP)颗粒。根据它们的起源,它们进一步细分为主要和次级粒子。它们在河床,北极冰,天然肥料,土壤甚至饮用水中都发现了明显的MPP。在过去的几十年中,微塑料甚至已经进入了人类食物链。简而言之,微塑料颗粒的普遍性使它们成为我们环境的巨大挑战。

微塑料从何而来?微塑料如何影响我们?

微塑料颗粒可以分类为一级和次级颗粒。主要的MP颗粒(MPP)是专门为工业用途生产的,例如化妆品中的剥离颗粒。必威东盟体育

Secondary MPPs are formed by physical, biological and chemical degradation of macroscopic plastic parts and are the main source of micro particles released into the environment. They are mainly formed by the degradation of improperly disposed plastic waste, tire abrasion and washing of synthetic textiles.

尽管对海洋生物的威胁大多是被理解的,但目前无法评估其全部范围。然而,海洋生物和鱼类的摄取导致微塑料对人类食物链的污染。由于MPP可能包含有问题的增塑剂,并且还可以吸附其他有机污染物,因此长期影响是不可预测的。

Learn how microplastics are analyzed using FT-IR microscopy.

How to Analyze Microplastics

如何分析和检测微塑料?

尽管光学显微镜是检测微塑料的基本方法,但该方法并未提供确定涉及聚合物的必要化学信息。然而,这种识别对于研究发现的微塑料的影响和起源至关重要。由于这个原因,微型专家正在与机器学习EVLAUTION工具结合使用µ-ft-IR成像。结果,可以完全表征颗粒,消除人为错误,并获得可靠,可再现的结果。

分析微塑料的最佳方法是什么?

The typical workflow of microplastics analysis:

微塑料分析涉及的基础步骤。必须首先根据其来源制备样品,然后使用适当的过滤器(如氧化铝)进行过滤,然后通过FT-IR成像测量,最后对使用机器学习进行评估。

化学分析通常以液态样品的形式开始,该液态根据其起源而不同。将该样品过滤到IR-Transparent底物上,并通过FT-IR成像以整体测量,以捕获过滤器上存在的所有颗粒。然后,通过健壮的机器学习算法自动分析化学图像。

FT-IR显微镜是微型研究中最常见的方法。工作流程非常简单,结果提供了很高的精度,最重要的是可靠性。尤其是焦距平面阵列检测器的FT-IR成像是最新的解决方案。如果您想进一步了解我们的FT-IR仪器设置,请查看我们的FT-IR显微镜。

为什么要进行微塑料分析的FT-IR成像?

FT-IR成像的优势

红外辐射与micropl交互astic particles, creating characteristic IR absorption patterns. These patterns are then used to identify the particles. If you want to catch up on theFT-IR的基础知识, click here.

到目前为止,FT-IR的最大好处是其出色的可靠性和易于应用。可以分析任何类型的塑料颗粒(深色,填充,荧光,...),需要最少的用户工作。

True imaging detectors unlock the potential of FT-IR

但是 - 当您将FT-IR与焦距阵列(FPA)探测器相结合时,事情变得非常有趣。结果是非常powerful imaging tool capable simplifying microplastics analysis to routine levels. To learn aboutFT-IR imaging, click here.

It comes down to a fully automated approach that can tolerate a lot of contamination on the filter (e.g. from a sediment) without any negative impact on the measurement results. Ultimately, FT-IR imaging ensures that no particle remains undetected, providing utmost reliability and measurement speed.

The secret to microplastics is the right compination of hard- and software

除了分析方法外,该软件对于分析微塑料至关重要。传统上,微塑料光谱参考文献并提供了大小,数量和身份的统计分析。但是,这种图书馆可以提供的限制。如果您需要非常可靠且可靠的分析,则必须大大增加库中的光谱数量,从而大大减慢了分析。

但是,为了使微型分析可扩展和常规,数据分析必须变得更快,最重要的是更聪明。当时间至关重要时,使用巨大的图书馆根本不切实际。这就是为什么研究人员开发了使用机器学习的新方法,从而充分利用了化学成像的巨大潜力。

在这里,不用单独检查每个频谱是否有其身份,而是立即处理整个FT-IR图像。智能算法立即分析整个FT-IR图像,使分析顺序更快,更可靠。为了将其投放市场,布鲁克与纯净为了提供和端到端的微型塑料解决方案,涵盖了高工作负载实验室和研究人员的仪器和软件分析。

Learn why FT-IR imaging by FPA detectors is the gold standard in microplastic analysis.
由马丁·洛德(MartinLöder)博士和克里斯蒂安·拉福尔(Christian Laforsch)教授领导的团队维持了德国领先的微型塑料分析实验室之一。
西班牙河床的沉积物样品的微观图像。长长的黑色纤维清晰可见。分析将由ATR-FT-IR进行,而无需进一步的样品准备。

FT-IR微塑料分析指南

微塑料颗粒的FT-IR分析指南

我们已经提到,世界各地的研究人员和微塑料专家都依靠FT-IR成像。这样做的原因是该技术提供的直接,简单的工作流程以及该技术提供的无与伦比的可靠性,速度和精度。在下文中,我们将提供对实验室分析基础知识的更深入的见解。

Step #1: Sample Preparation

After taking a sample, it might have to undergo pre-treatment, depending on the contamination from the source, and is atferwards filtered unto compatible filer materials. Very clean samples like drinking water are usually filtered directly onto a suitable filter. But environmental samples like ocean water, river sediments or soil may contain sand or plant material and must be prepared prior to FT-IR analysis.

为了去除较大的非微粒颗粒,使用了截然不同的滤波器。这些较大的颗粒后来通过宏观分析FT-IR光谱仪like the ALPHA II. After this, the samples are treated with salt solutions of different concentrations, which is called density separation. During the process, sand and other non-plastic particles sink to the bottom and can be easily removed afterwards.

但是,像鱼或贻贝这样的更复杂的样品呢?这样的样品需要一种复杂的处理来去除解剖后留下的所有有机物。通常,在过滤之前进行酶消化,酸性或碱性处理。

在海滩上发现中塑性塑料并进行分类以进行FT-IR分析。

Step #2: Filtration

We previously mentioned that aluminum oxide filters are the best choice for microplastics analysis. But of course there are other materials available, like silicon, PTFE, or gold-coated polycarbonate filters which all have distinct advantages and disadvanatges. However, since aluminium oxide filters have become the standard for FT-IR analysis of microplastics, we will also adhere to those standards in our website and videos.

Aluminium oxide filter loaded with microplastics.

步骤#3:FT-IR成像分析

Out of the three avilalbe measurements modes of FT-IR (transmission, reflection and ATR) transmission is the most suited for a fast and hassle-free analysis. Why? Well, ATR is a contact based method and particles can stick to the crystal which requires a user to clean it, making it unsuitable for automation. In reflection, thicker particles are hard to measure and produce spectral artifacts, making it less reliable. Finally, analysis in transmission iscontactlessand will give好的光谱in a short amount of time.

FT-IR成像分析后相同的微型滤波器。

Step #4: Particle Classification and Data Evaluation

The use of machine learning in the analysis of microplastics is on the rise. With it, researchers have found a reliable way to make data evaluation easy to use for anyone. Following best practices, Bruker teamed up with Purency to promote the Microplastics Finder (MPF).The MPF is a software that automatically analyzes whole FT-IR images of microplastic samples within a few minutes. It yields a comprehensive statistics of all particles present on the filter and classifies them by number, identity and size. All with just one click.

The classifying algorhithm is was trained by real world data that has been evaluated by different microplastic experts. In short, it brings you their combined knowledge into your lab and at your fingertips. Hence, the Microplastics Finder is the optimal tool for routine analysis of microplastic samples and one of the most promising candidates for future standardizaton. The goal is, to guarantee comparability between different laboratories, researchers and analytical insitutes around the world, eleminating human bias altogether.

Particle statistics of the microplastics finder by Purency.