PASEF-DDA enables deep coverage single-shot phosphoproteomics
and ion mobility-based elucidation of phosphosite isomers
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Introduction

To elucidate cellular signaling mechanisms, a detailed and highly resolved analysis of
phosphorylation sites is crucial. Although LC-MS/MS proved as a powerful tool for in-
depth phosphoproteome analysis, challenges remain in the correct determination of the
phosphorylation site. Coeluting and isobaric phosphopeptide isomers, harbouring the
phosphogroup on different residues, are often impossible to resolve in classical MS/MS
analyses. lon mobility spectrometry (IMS) enables their separation based on their
collision cross section (CCS), as the position of the phosphogroup affects the ion geometry
in the gas phase. Parallel accumulation serial fragmentation data-dependent acquisition
(PASEF-DDA) on the timsTOF Pro mass spectrometer allows the application of IMS on
large scale phosphoproteomic studies. Here, we present a high-coverage phosphopeptide

dataset from patient-derived osteosarcoma samples [1].

IMS enabled isomer separation

The presented sample preparation procedure and
subsequent database search with Peaks X+ resulted in

27,768 identified phosphopeptides without any sequential
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Methods

Tryptic phosphopeptides from osteosarcoma samples before and after treatment were

enriched in three replicates from 1 mg lysate each by TiO, from GL Science. Enriched
phosphopeptide samples were separated within 100 min (2 to 35% B, B: 0.1% FA in ACN,

400nL/min flow rate) on a reversed-phase C18 column with an integrated CaptiveSpray

Emitter (25cm x 75um, 1.6um, lonOpticks, Australia). After ESI ionization, peptides were

analyzed using timsTOF Pro with PASEF enabled at 120Hz. Trapped ion mobility

accumulation and elution times were synchronized at 166ms. In addition to high

resolution (40,000) accurate mass (<10ppm) the mass spectrometer records mobility (1/

KO), and with charge state and m/z deciphers CCS. The data was processed using PEAKS X
+ (BSI) and MaxQuant v1.6.10.43 (MPI of Biochemistry). The resulting phosphopeptide

information was submitted for Integrated Kinase Activity Score analysis (InKA).
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enrichment or fractionation (fig. 2/ 3). Of these, 11,247
can be classified as Class | phosphopeptides. fqure 20 a— Rireatmemm T
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4,672 phosphopeptide pairs were isobaric positional 21,109
isomers with p = 0.75 propability of correct phospo-site o5
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Of those, 457 phosphopeptide pairs could be separated by Taen2 0 e
IMS (A1/k0 > 2%, fig. 3). T _R— )
Example 1 - SRRM2 Example 2 - AKAP-12

Serine/arginine repetitive matrix protein 2.

Aberrant phosphorylation in liver cancer on

position S1691 [2]. Multiple coeluting isobaric
phosphopeptide isomers were separated by IMS.

Table 1
# Peptides -101gP Mass Obs. m/z RT
1 RS(+79.97)SRSS(+79.97)PELTR  55.08 1434.60 718.31 8.14
2 RSS(+79.97)RSS(+79.97)PELTR  57.48 1434.60 718.31 8.15
3 RSS(+79.97)RS(+79.97)SPELTR  59.34 1434.60 479.21 8.63
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A-kinase anchor protein 12. scaffold protein for
many key signalling factors, such as protein
kinase C (PKC), PKA, cyclin as well as F-actin. S286

was identified as significantly increased after

treatment, which is descibed as EGF response [3].
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Hyperactive kinase scoring in cancer research requires

accurate phosphosite information

timsTOF Pro raw data was analyzed using MaxQuant Phosphopeptide Phosphosite
. . . . . PSP NWK
to facilitate submission to the online interface for e W iz B Vo B U
loop Kinase Kinase

INKA score calculation [4]. This score combines
information from different sources to obtain a = ?

comprehensive picture of hyperactive kinases (fig. 8). %
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The presented experimental setup enabled the

INtegrative INferred Kinase Activity score (INKA) = Statistics

statistical evaluation by t-test to compare before and permutation
after treatment status (fig. 9 / 10).
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Significant changes after drug (pval<0.01, IFCI>2)
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Outlook

With the identification of hyperactive kinases together with whole proteome and

biochemical asssays, we hope to shed light on the mode of action of the applied

therapy and observed resistance behaviour of the osteosacroma cells towards

monotherapy. For more comprehensive analysis, other enrichment techniques like

phospho-tyrosine immunoprecipitation (pTyr-IP) and immobilized metal ion affinity

chromatography (IMAC) will be applied.
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