

Product Note T16-01/10

S510/x Step-Scan TRS experiments

Time Resolved Spectroscopy (TRS) Step-Scan

Modern Step-Scan spectroscopy was commercially introduced by Bruker Optics in 1985 and honored by the R&D 100 award in 1988. Today, Bruker Optics offers a comprehensive range of step-scan based instrumentation for the most demanding investigations with capabilities that achieve the highest signal-to-noise and greatest temporal resolution for repetitive time-resolved spectroscopy (TRS) kinetics experiments. Many publications have been generated by Bruker Optics customers using step-scan TRS to include investigations of organometallic complexation reactions, the characterization of ferroelectric liquid crystals, crystalline laser, and semiconductor materials, as well as a variety of photobiological systems. In addition, Bruker Optics has been a leader in innovating lock-in phase and amplitude modulation instrumentation and methodology. Bruker Optics introduced the first commercial DSP controlled and mathematical demodulation phase modulation instrumentation. For more information on step-scan TRS including measurement examples, see the booklet "Introduction to Step Scan FTIR".

Requirement for operation:

Step-Scan option S510/x, fast detector e.g. Dxxx/B or D317/ BF with transient recorder and OPUS/3D software package.

Step-Scan TRS		
Functionality	Specifications	
Phase Corrections	Calculated, Stored or Signed, AC/DC separate	
In-Step Co-Addition	Yes	
In-Step Time Averaging (Oversam- pling)	Yes	
Internal DigiTect ADC Speed, 24 bit Dynamic Range, dual channel	6 µsec	
Transient Recorder Digitizers Speed, 14 bit Dynamic Range, PCI-Interface, 2 channels	2.5/4 nsec or 100 nsec	
Second Channel for Pulse Weigh- ting and/or DC Coupling	Yes	
FT-IR as Trigger Master or Slave (both + and - TTL edges) and External Master Time Base Capability	Yes	
Negative Trigger Delay for Reference Spectra	Yes	
Data Acquisition Pulse TTL Generator	Yes	
Easy Manipulation of 3-D Data	Yes	
Display Interferogram During Data Acquisition	Yes	

Preamplifier and ADC specifications for MCT detectors using INVENIO or VERTEX series spectrometers		
	With Internal Standard ADC and MCT Photo Voltaic/MCT Photo Conductive	With PCI-Transient Recorder and Fast MCT Photo Voltaic (D317/BF)
Preamp AC cut-off Frequency:	ca. 220 KHz	ca. 20 MHz
Preamp AC cut-on Frequency:	16Hz (62 msec)	160 Hz (6.2 msec)
ADC max. Sampling Rate:	ca. 166 KHz, dual channel	400/250 MHz and 10 MHz
AD Conversion Time:	6 µsec	2.5/4 nsec or 100 nsec
AC/DC Slew-Rate Limit:	2.8 V/μsec	2.3 V/nsec
Rise Time (3 AD-Conversions)	18 μsec	7.5/12 nsec or 300 nsec
DC Option:	Electrically available. Freely switchable and configured via OPUS	Analog Output Cable (as for AC)

Slow Scan

The Step-Scan option S510/x for the INVENIO and VERTEX spectrometer series includes slow scan functionality. Beside the standard velocities of the moving interferometer mirror a large variety of continuously variable scanner velocities are selectable in the OPUS measurement menue "Optics" (see screenshot beside). In particular interferometer scanning velocities slower than VEL=1.6kHz are available. The slowest scanning velocity of 10Hz which relates to the HeNe control laser modulation frequency at ca. 15.800 cm⁻¹ (632 nm) and corresponds to 0.00063 cm/sec optical path difference speed, is possible with VERTEX 80 and 80v.

A very typical measurement application is the so-called Photo Thermal Ionization Spectroscopy (PTIS) or as well named Fourier Transform Photocurrent Spectroscopy (FTPS) in which the sample itself (typically a semiconductor) is used as detector [1].

Reference:

[1] A. Hikavyy et al., Phys. Stat. Sol. (a) 203, No. 12, 3021–3027 (2006)

asic 🚹 Advanced Opti	Acquisition FT Display Background Cher	k Signal Beam Path Spectral Range Selection
External synchronisation:	Off -	
Source setting:	MIR -	Ĵ.
Beamsplitter:	KBr 🗸	j
Optical Filter setting:	Open 👻	1
Aperture setting:	1 mm -)
Accessory:	Any -]
Measurement channel:	Sample Compartment]
Background meas, channel:	Sample Compartment]
Detector setting:	Classic Style Ch1 AC [External Pos.5]	•
Scanner velocity:	Variable	290 Hz
Sample signal gain: Background signal gain:	Vanado 1.6 kHz 2.5 kHz 5 kHz 7.5 kHz 10 kHz 20 kHz	Sample preamp.gain: Ref 🔹 🔹 Background preamp.gain: Ref 🔹
Delay after device change: Delay before measurement: Optical bench ready:	40kHz 60kHz 20kHz 120kHz 140kHz 160kHz 200kHz	sec sec
	200 kHz 280 kHz 300 kHz 320 kHz	

www.bruker.com

Bruker Optics GmbH & Co. KG

Bruker Optics is continually improving its products and reserves the right to change specifications without notice. © 2021 Bruker Optics BOPT-01