Atomic Force Microscopy

Graphene and 2D Materials

Bruker AFMs enable advanced property measurements and other 2D materials

With its ability to probe individual graphene flakes, providing nanoscale detail to the atomic level, atomic force microscopy has been part of graphene research since Geim and Novoselov’s Nobel prize winning discovery started the field. The early TappingMode images, acquired with aBruker MultiMode®AFM在通过光学调查点上的位置,明确识别了以前认为无法访问的单一石墨烯层。

这一发现之后的几年发生了石墨烯研究活动的爆炸,使用了100多个出版物Bruker AFMS。这些研究包括对石墨烯和氧化石墨烯的制造的研究,其中一致的产品纯度和已知的低缺陷密度是一个关键挑战,尤其是对于可扩展的石墨烯生产。他们还解决了对于石墨烯设想的广泛的应用程序,从柔性显示器和快速电子设备到执行器,生物传感器和复合材料。几乎每个领先的石墨烯研究中心的研究人员也在使用我们维度XR,Dimension FastScan®andDimension Icon®systems to drive their research in graphene and other 2D materials.

TappingMode images of NbSe2 (a) and Graphene (b) by the Graphene Nobel Prize recipient, using a Bruker MultiMode. Revealing the existence, layering, and adsorbate-substrate distance of these 2D materials. From K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proceedings of the National Academy of Sciences of the United States of America 102, 10451 (2005). Copyright (2005) National Academy of Sciences, U.S.A.

先进的改过的y Measurements

先进的物业测量在石墨烯研究中令人兴奋的AFM发现中起着关键作用。这项研究包括与布鲁克独家的定量机械属性映射PeakForce QNM®as utilized by Chu et al (J. Procedia Eng 36, 571 (2012) for unraveling graphene layering and by Lazar et al (J. ACS Nano ASAP 2013) for quantifying the graphene metal interactions controlling the electrode bonding in electrical device applications. Other examples are the nanoscale conductivity investigations on composites (Bhaskar et al., J. Power Sources 216, 169, 2012) and functionalized graphene (Felten et al., Small 9 (4), 631, 2013), as well as KPFM investigations clarifying the charge percolation pathway in optimized graphene oxide – organic hybrid FET devices (Liscio et al., J. Materials Chem 21, 2924, 2011).

PeakForce QNM modulus images of graphene on hexagonal boron nitride, revealing a transition to a commensurate lattice upon alignment with highly localized strain relief.

Capabilities to Advance Future Research

The latest Bruker technology promises more exciting advances yet to come.Peakforce KPFM™may permit extending the hybrid device investigations to higher spatial resolution, more quantitative measurements, and correlation with local material variations that could be revealed in simultaneous mechanical property mapping. Future conductivity studies may benefit from the proven ability ofPeakForce TUNA™在最脆弱的样品上提供最高的空间分辨率。进一步的峰值QNM研究可能会富含对2D材料石墨烯缺陷的研究,因为已经在3D晶体上显示了这种模式,以打开具有原子缺陷分辨率的属性映射的大门。

This current map produced in TUNA mode on HOPG demonstrates “lattice resolution” with spacing of 0.25nm.