超分辨率显微镜应用

Cell Biology

通过纳米级分辨率收集特定的定量数据

Explore Methods for Improving Resolution in Biological Microscopy

Analyzing cell structures and their organization is critical to understanding function within any cell type. However, visualizing many subcellular structures is impossible with traditional light microscopy due to the optical diffraction limit of ~200-300 nm.

Single-molecule localization microscopy (SMLM)—an efficient, straightforward process when performed with advanced microscope technology—solves this problem, enabling researchers toexplore new cell biology frontiers in relating structure, organization, interaction, and stoichiometry to cellular function.

Microscopy Techniques for Cell Biology Imaging

Many interesting cellular structures are smaller than the optical diffraction limit of ~200-300 nm. These include the substructures of most organelles and all macromolecular machines, channels, and receptors.

询问和回答有关这些结构和其他结构的分子组织,相互作用和化学计量的问题,需要在低于光的衍射极限的分辨率下对标记结构进行成像。

Conventional Microscopy Techniques in Cell Biology

Conventional light microscopy methods, like widefield and confocal microscopy, can image and identify specifically labeled cellular structures. However, they are limited in their ability to image below the optical diffraction limit. Alternatively, electron microscopy (EM) can achieve resolutions down to 0.1-0.2 nm laterally, but specific labeling or quantitative measurement of molecules within the cell is very challenging.

细胞生物学的超分辨率荧光显微镜

超分辨率显微镜支持高分辨率成像 - 横向下至20 nm,沿光轴50 nm - 专门标记的细胞结构。因此,它弥合了常规光与电子显微镜(EM)技术之间的差距。

用常规荧光显微镜(左)与SMLM超分辨率显微镜(右)成像的线粒体|数据由布鲁克提供
用常规荧光显微镜(左)与SMLM超分辨率显微镜(右)成像的线粒体|数据由布鲁克提供

*右:用Alexa 647对TOM20染色的线粒体,用SMLM(DSTORM)成像。

SMLM: See Biology in Nanoscale Detail


The high resolution (20 nm laterally) paired with the ability to image specifically labeled structures makes SMLM a powerhouse solution in cell biology research. Discoveries made with SMLM include the visualization of local movements of chromatin domains in HeLa cells, the eightfold symmetry within the nuclear pore complex of Xenopus oocytes and the radial ninefold symmetry of the centriolar protein CEP164, and the organization of connected tubular structures within the endoplasmic reticulum[1, 2].

适合SMLM研究的纳米级细胞结构的例子

超分辨率显微镜支持高分辨率成像 - 横向下至20 nm,沿光轴50 nm - 专门标记的细胞结构。因此,它弥合了常规光与电子显微镜(EM)技术之间的差距。

The resolution needed to visualize structures of interest must be taken into consideration when deciding if SMLM is the right solution. Some examples of the sizes of diffraction-limited structures suitable for imaging with SMLM are provided. Examples* include (but are not limited to):

  • 核孔复合物的扩散通道(长度为40-50nm)
  • 线粒体中的核苷(直径约100 nm)
  • 微管(厚度为24 nm)
  • Ribosome (~20-30 nm in diameter)
  • Bacterial heat shock protein DegP (20 nm in diameter)
  • 叶绿体中的圆柱形小管(直径为107±26 nm)
  • 小鼠细胞中的内吞坑(直径86±2.4nm)
  • 大鼠肝线粒体(直径30-40 nm)中Cristae的管状片段
  • Plasma membrane caveolae (50-100 nm in diameter)
  • 细菌鞭毛钩(~ 55纳米长度)

*纳米级子结构及其尺寸的示例来自“有用的生物学数据库”。关联:https://bionumbers.hms.harvard.edu/search.aspx

在超分辨率显微镜方法中,单分子定位显微镜(SMLM)可以说是最适合细胞生物学研究的。

具体来说,SMLM is the best method for studying specific nanoscale structures within cells when the research question requires:

  • 可视化分子相距至20 nm;
  • 标记多个特定分子结构;或者
  • 定量数据收集在此规模上。

SMLM在细胞生物学中的应用

SMLM已经被用来回答以前未开发的细胞生物学问题。SMLM是在3D和高分辨率和量化数据中成像多个特定结构的理想选择。请参阅下面的示例数据和描述,以了解有关SMLM可以唯一实现的研究应用程序的更多信息:

分子定量

凭借布鲁克的Vutara VXL的顶级照明功能,整个视野都均匀地照明,从而在整个感兴趣的地区均可获得统一和可靠的数据获取。SMLM不仅获得了统一的图像,而且每个定位数据点都包含可用于定量分析的统计信息。有了这项技术,可以绝对量化分子。相对定量也是可能的。

For example, a gap junction protein, connexin43, and a voltage-gated sodium channel, Nav1.5) are both located in intercalated disks; however, SMLM revealed that Cx43 and Nav1.5 are not expressed in equal quantity and do not form similar numbers of clusters[3].

分子分布

整个场照明也是分析样品中分子分布的关键。阐明整个视野的能力,以及与每个定位相关的统计信息的获取,支持对整个样本中分子分布的无偏和定量分析。作为分子分布分析的一个例子,SMLM允许与PARB DNA结合蛋白定位于细胞杆的PARA ATPase的分布,以协调染色体分离和细胞分裂[1].

Colocalization

SMLM解决了无法在200 nm之内成像分子的问题。使用SMLM,可以以〜20 nm或更少的分辨率进行图像,从而支持在彼此之间共定位的分子的准确成像。例如,使用SMLM,发现虽然Connexin43和Nav1.5之间存在密切的关联,但不到20%的connexin43簇,只有10%的NAV1.5簇直接与彼此重叠,并且它们确实重叠,但它们的位置,,它们在哪里重叠,但这是最小的 - 表明簇切向切碎而不是代表两种蛋白质的完全共定位的种群[3].

示例图像和视频

运动模型和粒子跟踪

使用SMLM,可以通过高空间分辨率实时成像细胞内分子的运动。带有SMLM细菌细胞中单粒子跟踪的成功示例表明,肌动蛋白同源物MREB在细胞壁合成的驱动[4].

右:两个实验监测线粒体动力学,标记为(1)橙色Halotag®染料(549)和(2)可光活化的远红色染料(PA-JF-646®)。

数据由布鲁克提供

固定样品成像

使用原始/seconday抗体标记的Alexa 647标记的固定微管的VXL -DSTROM图像中获得的微管。

活细胞成像

Acquired on the VXL - Imaging of live BSC1 cells labeled with Alexa 647 transferrin.

Complete Solutions for Single-Molecule Localization Microscopy

Bruker的Vutara VXL提供了一流的易用性和成像深度。支持细胞生物学研究人员需求的关键特征包括:

  • 自动化工作流:SRX软件使得可以轻松获取必要的数据集,并且工作流程使用户可以专注于生物学问题,而不是修补复杂的显微镜设置。
  • Superior 3D Imaging and Sample Flexibility:专有双平面检测提供了三维信息,并在组织切片中进行成像。
  • 无限的多路复用:The integrated Microfluidics Unit allows sequential labeling of an unlimited number of fluorescent probes.
  • Expert Applications Support:Vutara VXL users can receive personalized guidance for sample prep optimization specific to their research objectives.

FAQ

细胞生物学家可以使用哪些超分辨率显微镜溶液?

Bruker的Vutara VXL非常适合细胞生物学研究需求,需要(1)高分辨率,(2)3D可视化和/或(3)分子特异性靶向,适用于从单个细胞到组织样品到组织样品的样品50微米厚。

简化了Vutara VXL,微流体和SRX软件的工作流程和使用,Bruker科学家可以提供个性化的支持,从样本准备到数据分析到vutara vxl用户。

SMLM如何用于成像细胞内的结构?

通过本地化singl SMLM实现超分辨率e, blinking dye molecules with high precision. Diffraction-limited light microscopy can't distinguish two dye molecules within a distance less than 300 because their point-spread functions overlap too much. In SMLM, only one of the two dye molecules is active, while the other one is dark. Now, we can determine the position of this molecule with high precision. After a while, the active dye is rendered dark, and the previously dark dye becomes active. Now we can determine the position of the second molecule with high precision. The on-off switching of the dyes can happen actively (e.g., photo-activatable fluorescence proteins in PALM) or spontaneously (e.g., Alexa Fluor 647 in dSTORM).

用单分子图像技术对哪种生物样品进行了成像?

可以使用SMLM成像各种样本类型。固定样品和实时样品都可以用SMLM成像,尽管固定样本成像更常见。使用Vutara VXL,可以对各种样本类型进行想象,从细胞培养和组织切片,整个生物,例如果蝇幼虫和C. elegans和水凝胶最大100微米厚。

Is it possible to image deep into tissues with SMLM?

借助Vutara VXL的双平面技术,可以从水凝胶中的盖玻片中最多图像100微米,以及高达50微米的厚样品,例如组织切片甚至整个生物体。厚的组织或整个生物样品可能需要清除组织才能进行最佳成像。

How difficult is it to do single-molecule imaging?

尽管SMLM是一种新的高级成像方法,但示例制剂和成像协议得到了充分的理解和记录。Bruker应用程序专家可以帮助用户选择适当的标签策略和成像设置。

为SMLM准备实时样品的过程是什么?

尽管不如固定样本成像常见,但可以使用SMLM执行活样本成像。查看本网络研讨会讨论用于成像的实时样品的准备。有关实时成像技术和最佳实践的更多信息,请参见“参考和资源” [3,4].

References