Super-Resolution Microscopes

病毒学研究

Understanding viral particle structure, virus host interactions, virus pathology, and more

Vutara单分子定位显微镜用于病毒研究

Vutara单分子定位系统一直是理解病毒颗粒的关键工具。病毒颗粒通常比光的衍射极限(<200 nm)小得多,这使得单分子定位显微镜成为最佳合适的荧光技术,用于解决病毒颗粒结构细节或确定用细胞机械确定病毒成分的定位。在下面,我们强调了Vutara用于病毒研究的关键特征。

  • 使用专有双翼飞机单分子定位的超级分辨图像,至少达到20 nm xy和50 nm z精度。
  • 唯一能够对多种样本类型进行成像的3D单分子系统,从纯化的病毒粒子到组织切片和整个模型生物。
  • 高速采集:适合实时成像,粒子跟踪和快速数据采集的理想选择。
  • 综合流体: multiplexed imaging of the proteome, genome or live-cell applications.
  • 具有实时单分子定位的强大采集软件。
  • 强大的可视化和分析软件软件包提供了一个完整的统计工具集。

Vutara病毒应用

Below we highlight virus research performed on the Vutara. The unique ability to perform single-molecule localization of virus samples at both the coverslip and deep within tissue sections makes the Vutara the only system capable of imaging virus particle structures, virus particle host cell interactions, and effects of virus infection on cell biology on the same microscope. At the bottom of the page you can find some highlighted virus research papers performed with the Vutara super-resolution microscope.

Vutara病毒研究:

  • 病毒粒子的年代tructure
  • 病毒宿主相互作用
  • 病毒病理
囊泡气孔病毒颗粒。Red – VSV-G protein tagged with Alexa Fluor 647.

Virus Particle Structure

Alonas, E., Lifland, A.W., Gudheti, M., Vanover, D., Jung, J., Zurla, C., Kirschman, J., Fiore, V.F., Douglas, A., Barker, T.H., Yi, H., Wright, E.R., Crowe, J.E., Santangelo, P.J., 2014.Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells。ACS Nano 8,302–315。doi.org/10.1021/NN405998V

作者开发了研究包裹病毒的早期感染和复制的工具。

  • 这authors developed MTRIPs (multiply labeled tetravalent RNA imaging probes). A method to live label hRSV viral genomes.
  • MTRIP技术使蛋白质和病毒基因组的同时进行超分辨率成像。传统的荧光原位杂交技术(FISH)不可能。
  • 作者使用vutara来确定沿病毒GRNA的病毒蛋白的分布。只有单分子定位显微镜才能分辨出图像这些亚300 nm颗粒。

宿主细胞相互作用

Tiwari, P.M., Vanover, D., Lindsay, K.E., Bawage, S.S., Kirschman, J.L., Bhosle, S., Lifland, A.W., Zurla, C., Santangelo, P.J., 2018.设计的mRNA表达抗体可预防呼吸综合病毒感染。自然通讯9,1-15。doi.org/10.1038/S41467-018-06508-3

作者使用Vutara显微镜确定治疗性抗体Palivizumab对RSV感染的作用机理。

  • Using the Vutara’s ability to image cultured cells in 3D, the authors were able to visualize viral particles on the cell membrane.
  • 当细胞在其细胞表面表达帕利维珠单抗时,可以在细胞膜(病毒粒子的大小约为100-300 nm)附近观察到病毒体。
  • 这表明帕利维珠单抗作用机理是通过停止融合和胞质摄取RSV来防止感染。
Palizumab (green) expressing Vero cells exposed to RSV virions (magenta). 3D single molecule localization microscopy with the Vutara revealed that the cells expressing palizumab were incapable of being infected with RSV the cell and the virions were instead trapped on the membrane outside of the cell. Figure taken from: Tiwari et al. 2018 Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection, Nature Communications.

病毒感染对宿主细胞的影响

Milrot, E., Shimoni, E., Dadosh, T., Rechav, K., Unger, T., Etten, J.L.V., Minsky, A., 2017.结构研究表明,真核生物感染囊囊的噬菌体样复制周期。PLOS病原体13,E1006562。doi.org/10.1371/journal.ppat.1006562

作者使用Vutara来确定病毒感染对细胞骨架结构的影响。由此,他们确定肌动蛋白细胞骨架在病毒感染中起关键作用。

  • 这authors used super-resolution imaging to monitor how the microtubule and actin cytoskeleton changed over the course of viral infection.
  • 在感染过程中,微管网络变得更加碎片,并从细胞的中心消失。
  • 在感染过程中,肌动蛋白细胞骨架在细胞的周围失去了细胞的结构,并在细胞的圆形边缘周围形成壳。
  • 药理学实验和其他实验表明,微管网络的破坏对病毒体的产生影响不大,而肌动蛋白细胞骨架的破坏减少了病毒粒子的产生。

活细胞成像

Virus researchers may also be interested in the live cell and single-molecule particle tracking capabilities of the Vutara. The Vutara is fully capable of both live cell single-molecule imaging of cellular structures such as organelles and single-molecule particle tracking. Uniquely, the Vutara is also capable of combining these two techniques to do particle tracking in conjunction with cellular structure imaging.

Please refer to the live cell web page and theVutara Live Cell网络研讨会了解有关使用Vutara显微镜和SRX软件

顶部:使用闪光炸弹染料对线粒体的现场成像。底部:单个TOM20蛋白(左)和线粒体成像的实时粒子跟踪(右)。

强调病毒研究出版物:

  • Akiyama,H.,Ramirez,N.-G.P.,Gudheti,M.V.,Gummuluru,S.,2015年。CD169-Mediated Trafficking of HIV to Plasma Membrane Invaginations in Dendritic Cells Attenuates Efficacy of Anti-gp120 Broadly Neutralizing Antibodies。PLOS病原11。https://doi.org/10.1371/journal.ppat.1004751
  • Alonas, E., Lifland, A.W., Gudheti, M., Vanover, D., Jung, J., Zurla, C., Kirschman, J., Fiore, V.F., Douglas, A., Barker, T.H., Yi, H., Wright, E.R., Crowe, J.E., Santangelo, P.J., 2014.Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells。ACS Nano 8,302–315。https://doi.org/10.1021/nn405998v
  • Hodges, J., Tang, X., Landesman, M.B., Ruedas, J.B., Ghimire, A., Gudheti, M.V., Perrault, J., Jorgensen, E.M., Gerton, J.M., Saffarian, S., 2013.囊泡气孔病毒中聚合酶的不对称包装。生化和生物物理研究通信440,271–276。https://doi.org/10.1016/j.bbrc.2013.09.064
  • Kiss,G.,Holl,J.M.,Williams,G.M.,Alonas,E.B.S.,Santangelo,P.J.,Wright,E.R.,2014年。Structural Analysis of Respiratory Syncytial Virus Reveals the Position of M2-1 between the Matrix Protein and the Ribonucleoprotein Complex。病毒学杂志88,7602–7617。https://doi.org/10.1128/JVI.00256-14
  • Milrot, E., Shimoni, E., Dadosh, T., Rechav, K., Unger, T., Etten, J.L.V., Minsky, A., 2017.结构研究表明,真核生物感染囊囊的噬菌体样复制周期。PLOS病原体13,E1006562。https://doi.org/10.1371/journal.ppat.1006562
  • Tiwari, P.M., Vanover, D., Lindsay, K.E., Bawage, S.S., Kirschman, J.L., Bhosle, S., Lifland, A.W., Zurla, C., Santangelo, P.J., 2018.设计的mRNA表达抗体可预防呼吸综合病毒感染。自然通讯9,1-15。https://doi.org/10.1038/s41467-018-06508-3
  • Yaakov,L.B.,Mutsafi,Y.,Porat,Z.,Dadosh,T.,Minsky,A.,2019年。使用图像流式细胞术定量的Mimivirus感染阶段的动力学。Cytometry Part A 95, 534–548.https://doi.org/10.1002/cyto.a.23770