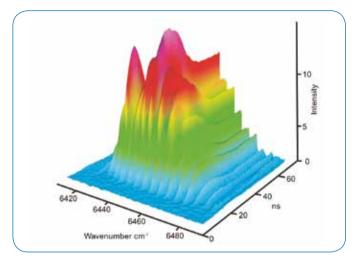


Product Note T16-01/10


S510/x Step-Scan TRS experiments

Time Resolved Spectroscopy (TRS) Step-Scan

Modern Step-Scan spectroscopy was commercially introduced by Bruker Optics in 1985 and honored by the R&D 100 award in 1988. Today, Bruker Optics offers a comprehensive range of step-scan based instrumentation for the most demanding investigations with capabilities that achieve the highest signal-to-noise and greatest temporal resolution for repetitive time-resolved spectroscopy (TRS) kinetics experiments. Many publications have been generated by Bruker Optics customers using step-scan TRS to include investigations of organometallic complexation reactions, the characterization of ferroelectric liquid crystals, crystalline laser, and semiconductor materials, as well as a variety of photobiological systems. In addition, Bruker Optics has been a leader in innovating lock-in phase and amplitude modulation instrumentation and methodology. Bruker Optics introduced the first commercial DSP controlled and mathematical demodulation phase modulation instrumentation. For more information on step-scan TRS including measurement examples, see the booklet "Introduction to Step Scan FTIR".

Requirement for operation:

Step-Scan option S510/x, fast detector e.g. Dxxx/B or D317/BF with transient recorder and OPUS/3D software package.

Step-Scan TRS					
Functionality	Specifications				
Phase Corrections	Calculated, Stored or Signed, AC/DC separate				
In-Step Co-Addition	Yes				
In-Step Time Averaging (Oversam- pling)	Yes				
Internal DigiTect ADC Speed, 24 bit Dynamic Range, dual channel	6 µsec				
Transient Recorder Digitizers Speed, 14 bit Dynamic Range, PCI-Interface, 2 channels	2.5/4 nsec or 100 nsec				
Second Channel for Pulse Weighting and/or DC Coupling	Yes				
FT-IR as Trigger Master or Slave (both + and - TTL edges) and External Master Time Base Capability	Yes				
Negative Trigger Delay for Reference Spectra	Yes				
Data Acquisition Pulse TTL Generator	Yes				
Easy Manipulation of 3-D Data	Yes				
Display Interferogram During Data Acquisition	Yes				

	With Internal Standard ADC and MCT Photo Voltaic/MCT Photo Conductive	With PCI-Transient Recorder and Fast MCT Photo Voltaic (D317/BF)ca. 20 MHz 160 Hz (6.2 msec)400/250 MHz and 10 MHz 2.5/4 nsec or 100 nsec2.3 V/nsec 7.5/12 nsec or 300 nsec	
Preamp AC cut-off Frequency: Preamp AC cut-on Frequency:	ca. 220 KHz 16Hz (62 msec)		
C max. Sampling Rate: Conversion Time:	ca. 166 KHz, dual channel 6 μsec		
AC/DC Slew-Rate Limit: Rise Time (3 AD-Conversions)	2.8 V/µsec 18 µsec		
DC Option:	Electrically available. Freely switchable and configured via OPUS	Analog Output Cable (as for AC)	

Slow Scan

The Step-Scan option S510/x for the INVENIO and VERTEX spectrometer series includes slow scan functionality. Beside the standard velocities of the moving interferometer mirror a large variety of continuously variable scanner velocities are selectable in the OPUS measurement menue "Optics" (see screenshot beside). In particular interferometer scanning velocities slower than VEL=1.6kHz are available. The slowest scanning velocity of 10Hz which relates to the HeNe control laser modulation frequency at ca. 15.800 cm⁻¹ (632 nm) and corresponds to 0.00063 cm/sec optical path difference speed, is possible with VERTEX 80 and 80v.

A very typical measurement application is the so-called Photo Thermal Ionization Spectroscopy (PTIS) or as well named Fourier Transform Photocurrent Spectroscopy (FTPS) in which the sample itself (typically a semiconductor) is used as detector [1].

Reference:

[1] A. Hikavyy et al., Phys. Stat. Sol. (a) 203, No. 12, 3021– 3027 (2006)

Eternal synchroneators.	Of				
Source setting:	1675				
Bearing their	40				
Optical Film setting	Open				
Aperture setting:	1.00				
Accusity	htt				
Neuronet sharket	Serple Careportment				
cirgound ness, channel	Sarple Corpatnets				
Detector setting	Cassis Style Chil AC (Eleanne Pas 5)				٠
Scanver velocity	Velation 16 km/s		230 Ha		
Samplin angred gamp	2.5 kHz SkHz		Sanpie prearty, gars	(H)	
Background signal part	7.54% 1049 2049 4049		Recipional presence gain	Net .	•
Delay after device change:	松田市 田市市		SHC .		
elay before malaurement.	120 APG		940		
Öptical bervit Hendy	140 kHz 160 kHz 250 kHz 240 kHz 200 kHz 300 kHz 300 kHz				

www.brukeroptics.com

Bruker Optics

Bruker Optics is continually improving its products and reserves the right to change specifications without notice. © 2018 Bruker Optics BOPT-4000389-02