AFM模式

切换光谱压电响应力显微镜(SS-PFM)

Quantitative ferroelectric hysteresis loop measurement with highest sensitivity and accuracy

Next-Generation Ferroelectric Materials Research with SS-PFM Mode

切换光谱压电响应力显微镜(SS-PFM)mode enables highly accurate nanoscale characterization of the properties of ferroelectric materials,expanding upon standard Piezoresponse Force Microscopy (PFM) by greatly improving the sensitivity and accuracy of measurements。此模式:

  • 大大减少了electrostatic artifacts that can influence signals measured by traditional PFM modes while achieving comparatively higher sensitivity.
  • Provides hyperspectral maps of ferroelectric key parameters, revealing information about the XY heterogeneity of a sample and its correlation with other properties with an otherwise unattainable level of detail.
  • 可以量化铁电滞后环的关键参数,并比较跨仪器,实验室和探针的材料性能。

Used alone or in conjunction with other AFM operational modes, SS-PFM provides new insights into the material microstructure/polarization switching relationship.

带有阳性电静态常数的样品(例如PZT)的PFM响应。如果域的极化与增加的电场平行,则样品会扩展。
Typical clockwise ferroelectric hysteresis loop of a sample with positive electrostrictive constant. Key parameters include coercive biases (V0), nucleation bias (Vc), saturation response (Rs), and remnant response (R0). Each has a positive and negative version (i.e. V0+).

Achieve Higher Sensitivity for Ultimate Low Signal Performance

The signal levels in PFM are generally small, with typical amplitudes <10 pm/V. This is at the limit of what an AFM can detect. To address this, one of two approaches are generally taken:

  1. 增加交流刺激电压,这会增加PFM信号或
  2. Mechanically amplifying the small PFM signal using the contact resonance of the cantilever.

对于许多样本,任意增加交流刺激电压不是实际方法。如果超出强制性偏差,则样品域将翻转(轮询);测得的振幅将不准确。对于强制性偏置通常较低的薄膜尤其如此。

在频率扫描期间测得的悬臂振幅(顶部)和相位(底部)。近接触共振,幅度明显大,比相位较低的噪声要高。

To characterize low response ferroelectrics without domain flipping, SS-PFM:

  • Improves the signal-to-noise ratio by applying the AC voltage near the contact resonant frequency of the cantilever and measuring the response.
  • Provides accurate measurements of both amplitude (A) and quality factor (Q) of the resonance to enable quantification of the response (A/Q).
  • 通过使用频率扫描和锁定放大器来测量响应,可以实现对A,Q和相位的更准确的测量,从而使更长的集成时间以获得最终的低信号性能。

执行准确的磁滞回路测量

Eliminate Artifacts

标准PFM允许通过纳米级分辨率测量铁电行为,但是测量的信号可能受悬臂上的静电力以及铁电反应的影响。这些可能会导致磁滞回路定量中的错误,甚至可以将非有产质材料误认为是铁电材料。必威手机客户端

SS-PFM模式提供:

  • Both off-field and on-field loops, separating read and write measurements with SS-PFM scripted spectroscopy.
  • Further mitigation of electrostatic artifacts by acquiring data at different read voltages as well as different write voltages.
  • Unambiguous phase and correct direction of hysteresis loop (and characterization sign of electrostrictive coefficient) withDCUBE-CR-PFM
Top: The electrostatic force between the cantilever and the sample creates an artifact by influencing the PFM response. Bottom: Using a switching waveform, called the SS-PFM probing waveform, which contains multiple different read voltages, one can compensate for the electrostatic artifact.

地图铁电参数

By collecting and analyzing an array of SS-PFM spectra, it is possible to generate maps of the key piezoelectric parameters, demonstrating the variation in the ferroelectric properties across the XY plane with nanoscale resolution.

SS-PFM提供:

  • 来自磁滞循环的关键铁电参数的高度敏感和可重复的点测量值。
  • Quantitative information—inaccessible via simpler imaging modes—through hyperspectral analysis of script data.
  • Maps of ferroelectric material properties, which can be correlated with properties drawn from other maps (piezoelectric map, chemical map, etc.).
顺时针,从顶部:PZT中的滞后循环显示关键参数;通过在10x10矩阵中的点收集光谱创建的VC+图;V0+的地图显示了先前轮询的区域。

避免接触模式以获得可重复的结果

标准PFM在接触模式下运行,这不适合在扫描过程中拖动在样品表面上拖动的AFM尖端损坏或位移的样品。较软的探针可能会部分缓解此问题,但更容易在PFM测量中进行静电伪像。

像布鲁克的唯一的DCUBE-PFM模式, SS-PFM avoids dragging the tip on the surface. This eliminates the harmful lateral forces that plague conventional contact mode based approaches. When combined with峰值敲击and MIROView for pre-scanning and navigation, contact mode can be avoided completely.

SS-PFM模式支持:

  • 低冲击扫描聚合物,纤维和纳米颗粒等细腻样品。
  • Enhanced tip lifetime when working with hard samples.
  • More consistent PFM images without compromising signal measurement accuracy.
顺时针从左开始:带有SS-PFM Rampscript阵列的Miroview Canvas在PFM图像上;聚合物薄片的DCUBE-PFM图像;使用接触模式后使用的提示。

实验设计和分析的易用性和灵活性

Innovation with Advanced Software and Analysis

Bruker的最先进,易于访问的软件和分析工具提供了灵活性研究人员的需求。

  • Our easy-to-use script generator can create the switching waveform script from seven key parameters. Advanced users can also create unique scripts in XML.
  • Open-source Python-based analysis code enables researchers to see exactly how analysis works and develop innovative approaches to analyzing SS-PFM data.
  • For researchers developing their own electronics, a Signal Access Module (SAM 6) allows hardware access to raw signals and can also provide high voltage for samples with large coercive biases.
顺时针从左上方:易于使用的脚本生成器;基于Python的分析代码;信号访问模块6;脚本编辑器。

Seamless Integration with the New NanoScope 6 Controller

PFM型实验对背景和串扰影响特别敏感。与新的纳米镜6控制器集成可以减少这些影响,从而通过优化的锁定放大器和信号路由提供最高的性能背景和串扰。

This benefits many AFM operational modes, yet it provides unique advantages for PFM-type modes (like SS-PFM) including:

  • 由于改善信号对噪声的改善而导致的分析更简单。
  • Clean, accurate measurements; even with low level signals at high frequencies.
NanoScope 6 Controller display